BAU 2021, Trade fair in Germany, Climate change, Werner Sobek, Dirk Hebel

BAU 2021 to address the challenge of climate change

The trade fair releases new press note highlighting exemplary strategies that will address climate change

The key themes at BAU 2021 will be to set the pace and give structure to the wide range of products and services on show. Many exhibitors will align their presentations with these themes and showcase solutions. In the forums at the fair, the key themes will be explored and discussed from a range of aspects. And in the special shows they will be illustrated using examples of products and projects.

On the one hand, climate change seems to have been pushed into the background in the wake of the corona pandemic, out of public awareness. On the other hand, the COVID-19 epidemic is heightening the senses. It makes it clear that precautions must be taken to avoid being completely overwhelmed by a development. This is also and more than ever true for climate change.

In the efforts to tackle rapid climate change, the building sector is called upon more than ever to come up with solutions. The best chances for success lie in collaboration between engineers, manufacturers and creative minds. All of them must find a way of constructing buildings and cities in a climate-neutral way. The components in this are: energy-efficiency, recycling, sustainability and resilience.

Scientists around the world are in agreement: natural disasters such as floods, hurricanes, storms and droughts will be the “weather” of the future, unless we succeed in bringing down global warming to well below an increase of 2°C compared with pre-industrial levels. This was precisely the goal identified by the UN in the Paris Climate Agreement in 2015. So far there has been little progress. It wasn´t until the end of 2019 that things started to happen: The European Parliament declared a climate emergency and Germany and its European partners agreed to reduce greenhouse gas emissions by at least 40 percent by 2030 compared to 1990 levels. The Europeans committed to achieving a range of goals by 2030: above all the goal of reaching zero emissions by 2050 in Europe. So now it is high time to concentrate on implementing those intentions!


Regenerative energy model: Scandinavia

Powerhouse Brattørkaia, a pioneering energy-positive building, was built in 2019 in Trondheim. Designed by the Norwegian architectural bureau Snøhetta, the building envelope is clad with photovoltaic cells. Despite the very northerly location, these cells manage to produce more energy than the building consumes. So, not only does this energy provide for the daily needs of the Powerhouse Brattørkaia itself, surplus energy is also made available to nearby buildings and associated means of transport, such as electric buses, cars and boats in a local micro-network. Far from being an isolated example, the concept behind this building is attracting wide interest elsewhere—in Germany, for instance, demand for photovoltaic systems has risen significantly in recent years. As well as cheaper prices for such systems, building-owners like the idea of using energy they have generated themselves, storing the surplus in highly developed lithium-ion batteries and making that available for mobility purposes.


Reducing waste through the use of alternative building materials

560 million tons—that´s 90 percent—of all mineral resources used in Germany each year, go into the production of building materials, and the building sector is responsible for 54 percent of the waste generated, according to the Deutsche Bundesstiftung Umwelt (German Federal Environmental Foundation). On a global perspective, cement production is responsible for more carbon emissions than the entire aviation sector. The choice of building material therefore plays a big part when it comes to reducing the very high level of consumption of natural resources. Conventional materials such as concrete, steel, glass, bricks, blocks and wood are now joined by new names such as Typhaboard, a material made from typha (cattail) and a mineral binder. It is fully compostable and suited for use as supporting and insulating wall elements. The Fraunhofer Building Innovation Alliance is researching this at present. Scientists are also examining so-called phase-change materials (PCM) based on sugar alcohols for latent heat storage and bio-hybrid fiber-reinforced plastics, plus lots more.


First carbon concrete house ready by the end of 2020 in Germany

In the Swiss town of Dübendorf innovative materials are already being tested in practical applications. In 2016 the Swiss Federal Laboratories for Materials Science and Technology built a four-story research building there. Called NEST (Next Evolution in Sustainable Building Technologies), this building also features a module called UMAR, which was designed by Professor Werner Sobek in collaboration with Dirk Hebel and Felix Heisel. UMAR stands for Urban Mining and Recycling. This module, which is used to live in, is the very first building made entirely from recycled materials (apart from the timber load-bearing frame). Another concept for an experimental building, to be completed in Dresden by the end of 2020, is the first carbon concrete house. In carbon concrete, the reinforcing steel is replaced by carbon fibers. This material is regarded as more durable and lighter than reinforced concrete, and it has higher strength. It has the potential to revolutionize architecture: Because carbon does not rust, then you don´t need the thick layers of concrete that are required with reinforced concrete. That in turn saves resources, enables the use of slimmer components and, in cement production, reduces energy consumption and lowers carbon emissions.


Resilience

The best way to cope with change

While in recent decades architects and urban planners have mainly focused on energy-efficient buildings, they are now increasingly turning their attention to the need for resilient buildings and urban areas. By definition resilience means the capacity of a system to cope with change and develop further in the face of external impacts such as natural disasters and temperature change. The more disruption a system withstands and the more easily it adapts to changed conditions, the more resilient it is. Architect and town planner Thomas Sieverts summed up the main features of resilience in the field of building: these include technological redundancy, ease of replacement of components, and decentralisation. Planning that takes into account future changes is the best way to ensure resilience over the long term.

Trending

Events

29 May, 2020
The Guild, Mumbai, presents a selection of paintings, From Ash to Spring, that takes us on the journey of Iranna’s more...
24 May, 2020
The trade fair releases new press note highlighting exemplary strategies that will address climate change
18 May, 2020
Kochi-based designers Utharaa Zacharias & Palaash Chaudhary curate an interesting design show in collaboration with eleven studios from around the more...